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high inputs, where transmittance values can drop to low levels, deviations are observed.
It is thought that acoustic effects arising from thermal transients may be responsible.
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Introduction
With the rapid success of computer technology the numerical modeling of pulsed laser

beam propagation through nonlinear optical materials has become a powerful tool for
investigating the interaction between light and matter. In addition, this modeling is now



progressing to the stage where nonlinear optical device design can potentially be
performed numerically. A variety of algorithms have been developed and implemented
in different areas of optical science including propagation in waveguide and fibers, the
atmosphere, nonlinear optical materials and in laser cavity design. In our work
performed under ONR sponsorship, we have focused on the numerical simulation of
high-energy laser beam propagation in bulk nonlinear optical media. The main objective
of our research is to develop a set of computer codes that will allow us to determine the
influence of different nonlinear mechanisms and their coupling on the self-action of the
propagating beam. One of the ultimate uses of this knowledge is to design passive optical
limiting devices.

Taking advantage of the cylindrical symmetry of the common optical system (e.g. TEMgo
laser mode or flat top beam) allows us to save computer time and memory by reducing
the four dimensional (3D in space and 1D in time) problem to three dimensions (2D in
space and 1D in time). Assuming that the pulse width is long enough and propagation
distance short enough that we can ignore the dispersion of the material, the modeling of
the beam self-action can be split into two separate tasks. (This is an excellent
approximation for the systems under study.) The first of these tasks is the computing
(and storing) of the spatial distribution of the nonlinear susceptibility within the sample
for the particular moment in time. The second task is the CW propagation of each time
slice through the material.

The first part of this report describes the numerical method we used to solve the paraxial
wave equation in the nonlinear media. In the second part different nonlinear mechanisms
are presented such as a Kerr-like index change, two-photon absorption, excited-state
absorption and refraction as well as the refractive index change due to thermal lensing. At
the end we show results of the numerical modeling of the laser pulse propagation through
media having such nonlinearities. The comparison with the experimental data is given
using a Z-scan setup and CCD camera outputs located at the image plane of the optical
system.

Beam Propagation Algorithm

The propagation of light through the optical media can be described by the solution to the
vector wave equation:

20(s 2p(3
VxVxEG.0)+ 1 0°E(F,t) _ 9°P(F.t)

P o5 2

, (1.1)

where E(r,,z,t) and 13(r l,Z,t) are the electric field amplitude and the polarization. For
the slow optical systems if the pulse width is long enough so the dispersion can be
neglected this equation can be greatly simplified and rewritten in a scalar paraxial form:

2 jka—‘P-g—iiz’—t) =Vi¥(r,z.t)+ k2 x(r 2, )¥(r,,2,t)  (1.2)
Z

and E(r,,z,t)="¥(r,,z,t)e’ . Here V2 and r, denote the transverse Laplace operator
and spatial coordinate, while y,,(r,,z,t) is the nonlinear susceptibility of the material (in



this formalism it also includes the linear absorption), which may, in general, consist of
instantaneous and cumulative parts:

Ao 2.8) = i (s 2)+ 20 (s zt). (1.3)
Due to the fact that there is no explicit time dependence in Eq. (1.2) (although the field
amplitude as well as the nonlinear susceptibility are in general functions of time), the
modeling of the laser pulse propagation in the nonlinear media can be split into two
separate numerical tasks. The first one is dividing the pulse into a number of time slices
W(r,,z,t,) and propagating each slice as a CW beam. The second one is computing and
storing the accumulative part of nonlinear susceptibility being induced by each slice

acc

Ame(r,z,t,) . Therefore, the solution to the original time-dependent wave equation (1.2)
becomes a CW propagation problem.

There is a variety of methods dealing with the paraxial wave equation in cylindrical
coordinates. We use the second-order accuracy algorithm developed by Fleck et al. [1].
The transverse field distribution at the next step along z can be computed from the field
distribution at the previous step using the formal solution to Eq. (1.2):

W(r 2 +Az) = exp{—jS (1, 2)Az} ¥ (,,2), (1.4)
with the propagation operator

o 1{2* 19
S(r_L,Z)=E{ﬁ*‘:‘é—r‘*‘kozx]w‘(’l,Z)} (1.5)

and taking the derivatives using 1D FFT. This algorithm, although not unitary, gives
accurate results if the step Azis chosen to be small enough (in our calculations this must
be of the order of the wavelength).

It can be seen that this algorithm allows us to save computer memory by using only 2D
arrays of data. The nonlinear susceptibility does not have to be saved with each step Az .

ace

It is advisable to make this step Az, in array of yx; (r,,z,t,) larger (apparently it is

convenient to make it to be equal to the multiple number of Az), therefore, assuming that
the nonlinearity does not change significantly within this distance we simply approximate

acc

it to be constant within Az,,. This allows us to reduce the size of the array yy; (r,,z).

Also the chosen method for CW propagation has proven to be highly efficient, which
allows us to model the propagation of the beam through a distance of tens or even
hundreds of Rayleigh ranges, while the beam changes its size by several orders of
magnitude. Figure 1 shows the results of a test of the accuracy of this method on the
linear propagation of the Gaussian beam where an analytical solution is possible.
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Fig. 1 Comparison of Gaussian beam size (a),(b) and power (c) calculated numerically and
analytically. Maximum error occurs at the waist and is equal to 0.09% for the size (b) and 0.18% for
the power (c).

Nonlinear Mechanisms

The nonlinear susceptibility as given in Eq. (1.5), is related to the nonlinear refractive
index change and the absorption of the material as:

Re{yw ()} = 2n,An (2.1)

ins ¢ - n
0
Here n, and k; are the linear index of refraction and the wave vector in vacuum, while

o, is the linear absorption coefficient and ¢, the nonlinear absorption coefficient of the
material.

Instantaneous Nonlinearity

If the nonlinear response of the material has a characteristic time much shorter than the
pulsewidth (for our purposes shorter than a few picoseconds), then we can consider it to
be instantaneous and can be described by the first term of the nonlinear susceptibility Eq.
(1.3). Typical examples of such nonlinearities are the bound-electronic nonlinear Kerr
effect (nonlinear refractive index n,) and two-photon absorption, 2PA (of 2PA

coefficient ). The relations for these quantities are:
An=nl(F) (2.2)
oy, = BI(F). (2.3)



Excited-State Nonlinearities

Excited-state absorption is a well-known process, which corresponds to absorption
caused by a transition from an excited state to the next higher energy level. In order to
have the excited state occupied it must be previously excited from the ground state.
Therefore, excited-state processes follow linear absorption (or nonlinear absorption).
Depending on whether the excited-state cross section of the material is smaller than that
of the ground state or larger, we can distinguish saturable absorbers and reverse saturable
absorbers (RSA). RSA was shown to be a very attractive nonlinearity for passive optical
limiters (devices which are transparent for low energy light but “limits” its transmittance
to high energy inputs) since the material becomes highly absorptive when the input
fluence of the beam increases. Since this nonlinear effect accumulates in time as the
integral of the irradiance with time (fluence) this nonlinearity is effective for longer
pulses than are instantaneous nonlinearities. It has also been shown that several organic
materials exhibit RSA properties in the visible region, including phthalocyanines,
naphthalocyanines and their derivatives, and polymethine dyes. The energy level
structure of those materials can be approximated by a five level model (see Figure 2),
where the G-S1 transition represents the linear absorption and S1-S2, or TO-T1 — excited-
state absorption. Time constants and cross section values have been experimentally
investigated for TBP, SiNc, PbPc and several other materials.

singlet:
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— — — —
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Fig. 2 Five-level system



The overall absorption of the system can be derived as a function of the populations of
the levels:
o =0,N;+0,Ns, +0,N;, (2.4)

where 0,,0, >> 0, since those materials are reverse saturable absorbers. The dynamics
of the five-level system can be described by a set of five rate equations that usually can
be simplified for a particular time scale of the laser pulse, reducing the computation time.
For nanosecond pulses, a good approximation is obtained by assuming the decay time of
levels S2 and T1 are much smaller than the pulsewidth (usually 7, and 7., are of the
order of a few picoseconds or less). This eliminates the need for tracking the populations
of levels S2 and T1 since their populations remain near zero. Also if the decay time of
first triplet level 7., is much longer than the pulsewidth, it can be taken as infinite. These

simplifications result in:

dNsi _ 5y 1 _Ns
d “h Tg

iy Ny @5
a T,

Ng+Ng +Npy =N,

Here the overall lifetime of S1 is 1/t =1/t,+1/7,, , where T, is the intersystem

crossing time which characterizes the dynamics of decay from the singlet manifold to the
triplet manifold. The triplet yield is given by ¢ =1, /7., and N, is the total density of

molecules (atoms or ions). If the laser pulse is in the 10’s of picoseconds range, decay to
the triplet manifold can be entirely ignored, since 7,,, >> 7, and thus the five-level system

can be reduced to a three-level system which for the case of no saturation of the level S2,
has an analytical solution.

Since the materials exhibit excited-state absorption, they show excited-state refraction as
well — a consequence of causality giving Kramers-Kronig relations. However, the
magnitude and sign of this nonlinear refraction has a different frequency dependence
from the nonlinear absorption. This nonlinear refractive index change for several
materials has been observed and mathematically can be represented by a refractive cross
section proportional to the density of excited states:

An = 051, N 'I:GTIJNTI , (2.6)

where oy, , and o, are refractive cross sections of the first singlet and triplet levels and

k is the wave vector.

Thermal Effect

It was experimentally observed that a high-energy laser pulse, while passing through
absorptive liquid media, induces temperature and density gradients that change the
refractive index profile. This process is often called the thermal lensing effect, since the
change in refractive index develops a negative lens inside the media. This phenomenon



has been rigorously studied both experimentally and theoretically. Moreover, for various
time scales the thermal effect has different properties. For time scales longer than a few
microseconds, thermal diffusion is the main source for the temperature gradient. Heating
the material in this case can be described by the following equation:

pcpa—f—szT =al, 2.7

where p is the density of the media, C, is the specific heat at constant pressure, - the

absorption coefficient and y - the thermal conductivity of the material. The refractive
index change is, in general, a function of temperature and density changes inside the

material;
on on
An=|— | Ap+| — | AT. (2.8
(@l g (WJ @9

Therefore, An is linearly proportional to the temperature change if the density is constant,
and the index of refraction changes due to thermal diffusion. However, for shorter times
(the nanosecond time scale), density changes occur due to the acoustic wave generated by
local heating and expansion of the liquid media. For picosecond pulses, the acoustic
waves do not have time to develop, and therefore the density cannot change and the
refractive index remains fixed except for other types of nonlinearities. Thermal refractive
index changes in solid media also occur but are usually an order of magnitude smaller
than in liquids and are often masked by the electrostrictive effect.

According to the derivation given in the Appendix, the index change induced by
propagation of a nanosecond laser pulse through a liquid can be described by the
following acoustic wave equation:
1 9%(An)
Vi(An)- —

(an) Cc: o¢
where Cs is the velocity of sound, S - the thermal expansion coefficient and y°- the
electrostrictive coupling constant. For typical values of the sound velocity in liquids
(1+2x10° m/sec ) if we have a few nanosecond long pulse focused to a spot size of 10 to
20 um in diameter, the back part of the pulse is diffracted by the acoustic wave induced
by the front part of the same pulse.  To simplify the numerical modeling of the

photoacoustic effect we can parameterize the index change close to the propagation axis
by the following expression (see the Appendix):

Ans[@lAT,where (ﬁl “YB 0

- YByr (a9
2n

oT oT 2n

With such an approximation we can significantly reduce the computational time required
to numerically solve the acoustic wave equation for each time slice of the pulse. In fact,
there are a number of experimental results in the literature where this thermo-optic
coefficient was calculated in this approximation for different liquids. One has to be
careful using the approximation Eq. (2.20) and the experimental data for the effective An
published in the literature. Equations (2.10) assumes that the thermal lens is being
induced instantaneously and ignores the small index disturbances on the sides of the



pulse which are due to the acoustic wave propagation. Figure 4 shows the comparison
between the refractive index change (nonlinear phase shift) obtained by solving the full
acoustic wave equation (2.9) and the one obtained using the relation (2.10). This
approximation is only valid when the characteristic length of the acoustic wave C,t, is

larger than the beam size. If the beam size is too big the acoustic wave does not have
enough time to grow within the pulse (this case is presented in the Figure 6). Thus, the
approximation (2.10) will show the larger index change (stronger nonlinear lens is being
introduced as could be seen in the Figure 7). Also if this approximation were used to
analyze the experimental data (for example Z-scan curves), the value of the thermo-optic
coefficient (dn/dt) could be incorrect.

40

200 30

Fig. 3 Temperature change AT(r,t) due to thermal effect. Nigrosine in water.
left: Ein =2 uJ, © =8 um, 1=10 ns (FWHM). right: Ein = 30 1, @ =30 um, 7=10 ns (FWHM),

Fig. 4 nonlinear phase shift Ad(r,t) due to photo-acoustic effect (left) and thermal lensing approximation (right).
Nigrosine in water. Ein = 2 uJ, @ =8 um, 7=10 ns (FWHM).



As was mentioned above, heating of the material is caused by absorption of the laser
beam energy, however, the mechanisms of such absorption can vary. We first model the
thermal lensing and photoacoustic effects induced by linear absorption. Figures 3-7 show
the temperature change distribution as well as the introduced nonlinear phase shift
(proportional to the refractive index change) and far-field fluence distribution calculated
while propagating a 20 nsec FWHM pulse through a water solution of nigrosine.
Nigrosine is chosen since it shows very little nonlinear response other than thermal
refraction from linear absorption for nanosecond inputs. The comparison of the results
with ones obtained with the approximation Eq. (2.10) is also presented.
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Fig. 5 Fluence distribution after the sample (left) and in the far field (right) if nonlinear refractive index change was
computed by solving the acoustic wave equation and with lensing approximation (“linear” corresponds to the case with
no nonlinearity)

Fig. 6 nonlinear phase shift Ad(r,t) due to photo-acoustic effect (left) and thermal lensing approximation (right).
Nigrosine in water. Ein = 30 uJ, v =30 um, v=10 ns (FWHM),
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Figure 7. Fluence distribution at the exit plane of the sample (left) and in the far field (right) if nonlinear
refractive index changes are computed by solving the acoustic wave equation and with the lensing
approximation (“linear” corresponds to the case with no nonlinearity).

A comparison of the predictions of this model with the results of a Z-scan on the solution
of nigrosine is shown in Fig. 8. These curves show excellent agreement.
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Figure 8. A comparison of the experimental Z-scan (using a Gaussian input beam) performed on a solution
of nigrosine in water for 20 nanosecond (FWHM) 532 nm pulses at an energy of 0.4 1 focused to the
6 pm waist.

If we consider the source of the thermal effect to be RSA, we can evaluate the
significance of this effect by running the propagation code including RSA only and
including both RSA and the photoacoustic effect together.



Flat-Top Beam Analysis
We have also performed experiments and analysis of so-called flat-top beams. We
experimentally produce these by expanding an initially Gaussian bean and sending it
through a finite aperture which clips the beam to approximate a flat-top beam. Figure 9
shows a comparison of the calculated radial energy distribution with the experimental
distribution for nigrosine with the detector located at the image plane of the flat-top
beam. The sample is located at the position corresponding to the minimum of the Z-scan
curve (Figure 10).
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Figure 9. Normalized fluence distribution in the image plane. Sample is located at the point which
corresponds to the minimum of the Z-scan curve (see the next Figure).

Figure 10 also shows the comparison of the experimental Z-scan curve with the
numerical one.
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Figure 10. Z-scan using a flat-top beam for nigrosine in water. Experimental (circles), numerical
(triangles).

Limitin

We have also compared the results of calculation using this model to the results of
limiting experiments. Figure 10 shows the design of a 3-element (liquid filled cuvettes)
optical limiter using solutions of zinc-tetrabenzporphyrine (TBP obtained from Natick).
The comparison of data with experiment is shown in Fig. 11. The theory matches
experiment well except for very large input energies where significant differences are
seen. These differences may indicate that the thermal lensing approximation is breaking
down and that it may be necessary to solve the full acoustic wave equation at high inputs.
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Figure 10. Schematic of the design of the 3-element TBP limiter.
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Figure 11. Comparison of the calculated (circles) energy transmittance for the 3-element tandem limiter to
experiment (dashed line).

Conclusion

We have developed computationally efficient computer codes for modeling the
propagation of high irradiance laser pulses through thick (several Rayleigh ranges)
nonlinear optical materials including several nonlinear mechanisms relevant to optical
limiting. Besides the inclusion of both ultrafast nonlinear absorption and refraction, we
have included the effects of excited states on both the absorption and refraction. These
nonlinearities accumulate with time within a laser pulse. Computationally this requires
the code to remember previous parts of the laser pulse. We have also included the effects
of thermal lensing with the added complication of the acoustic waves generated by linear
and nonlinear absorption. This requires simultaneous solutions to two wave equations
and is extremely computationally intensive. In order to produce a more time efficient
code we have studied the region of validity of an approximate solution to the acoustic
wave equation. Comparisons between the output of this code to experiments are still
ongoing. In addition other numerical methods and approximations are being studied.

Appendix

When the liquid or gas media absorbs energy from the laser beam, it results in changes of
density, temperature, pressure and fluid velocity. The general form of the equations
describing such changes is the following:



ap’
dt

Al +Vp' =VF ,
ot

pe oT" (p)9p _
"9t |p ot

where p is the density, p pressure, T - the temperature and v - the fluid velocity of the

media. The quantities without the prime are undisturbed properties of the material, while
the ones with the prime characterize the changes due to the absorption of laser light
energy. c, is the specific heat at a constant pressure. We can now write

0(r,1)= ( at l At (a2

v

p (A.D)

which is responsible for the heating effect induced by the laser beam with intensity I(r,¢)

and
F(r,t):.p(g_e] M (A.3)
8:0 T CS

for the electrostictive effect. ¢ is the isotropic sound speed ¢, = /(0 p/dp), . Equations

in (A.1) are linearized with respect to small changes in media characteristics (variables
with prime) and can be viewed as conservation of mass, momentum and energy
respectively. In literature references an alternative form of the starting equations was
chosen, however the results obtained are basically the same.

If a liquid media is under consideration, the electrostrictive effect can usually be
neglected and the equation for the density change will be:

d (a%p 292 7| o2
[ﬁtI( 53 ) csV ij—V 0. (A4

By integrating the last equation we obtain the acoustic wave equation for the density
change inside the media:

d%p’ 2 s

—cVip' = j V20(r,e Yt . (A.5)
ot
In a liquid media the refractive index change is given by

on on Y on
an=[22] A AT =2 AT, (A6
(ap ! ‘”(97] 2np ’”(ar) (Ao

where y° is the electrostrictive coupling constant and

v = p[&'nzl _ (nz-—IXn2+2) AT

ap 3
For liquid media, the index is usually much more sensitive to density changes, therefore

contributions due to temperature variations can be neglected (second term in (A.6) is
zero). Using this fact and two well-known relations:
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we can write down the wave equation for the refractive index change:

2 e 2
d (lin)_ cgvz(An)zl_Ef_s_ J‘_ V{(aa(r,¢))ds . (A.9)
ot 2np Cp ”

The source factor in the last equation can be expressed in terms of the temperature
change. The general heat balance equation

d
pc,,—z-— AVT=dl , (A.10)
t
where y is the thermal conductivity of the material, can be integrated for nanosecond

pulses (ignoring temperature diffusion on this time scale) to yield
T(r.1)= > L[ et ) (A1)

14
Combining (A.9) and (A.11) we can obtain the final form of the acoustic wave equation
for refractive index change:

aa(Atn) sV (An) = Yﬁ < AVT(.f).  (A12)

The fractional index change can be parameterlzed in the paraxial approximation (close to
the laser beam axis) as [2]:

2 7 ", —
Anr) |,V (r—Ot) 2n p'(r=0,t) A13)
n 2 p ap n
and if only the first term in the expansion (A. 13) is taken into account

an=[ 28| AT, where _YB (A

T 8T 2n

The expression (A.14) is a commonly used approximation called the thermal lensing
effect which is usually used for longer time scales c¢gt/a >1 (microseconds), where a is

the radius of the beam. The coefficient in the last equation is called the thermo-optic
coefficient and it has been measured for some organic solvents. Equation (A.12) can also
be obtained from the derivation given in Ref. [3] if the definition (A.7) is used.
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